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Abstract The research aims to search for a method for Turtlebot4, a driving robot, 
to bypass a dynamical obstacle based on an affordable camera while it drives toward 
some assigned destination. The method of obstacle dodging implemented in this 
research consists of obstacle detection based on a stereo camera, path planning, and 
motion control. Most previous research focused on using state-of-the-art instruments 
such as event cameras or LiDARs to perform an obstacle-dodging function. If the 
dynamical obstacles dodging technology proposed in this research could be imple-
mented on Turtlebot4, the cost of implementing the functionality of obstacle dodging 
would be lowered. 
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Control · Deep learning 

1 Introduction 

Previous research has been conducted concerning dynamic obstacle avoidance within 
the realm of robotics. For example, [1] demonstrates how a quadrotor could dodge 
obstacles by making use of an event camera. Additionally, [2] combines the data 
from the camera and 2D LiDAR for self-driving automobiles to dodge obstacles, 
which ensures the safety of self-driving automobiles. Furthermore, [3] showcases 
how humanoid robots could circumvent obstacles by combining vision-based sensing 
with a footstep planner. However, two of the previous studies I mentioned rely 
on unaffordable event cameras or LiDARs. One of them involves implementing 
obstacle avoidance procedures on humanoid robots. Instead of using event cameras 
or LiDARs, if the vision-based sensing method founded on [4, 5], and [6] could be 
implemented on the Turtlebot4, it could become fundamental for future research on 
the cost-lowering of self-driving automobiles.
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2 Preliminaries 

Robot Operating System 2, also known as ROS2 provides a malleable architec-
ture for robot engineers to facilitate communication, real-time control, as well as 
collaboration between various robotic system components. This makes it possible 
for developers to create, simulate, and deploy robotic applications across a wide range 
of platforms. The most frequently used structure of ROS2 in my research is “nodes 
and topics.” The robot system and be broken into several nodes, through which the 
robot can perform specific tasks. The one who releases the data is the “Publisher 
Node.” On the other hand, the one who receives the data is the “Subscriber Node.” 
The data is not transferred directly between them. The publisher needs first to send 
the message to the specific “Topic.” The subscriber, who subscribes to that topic, 
can then receive the data from that topic. “The Turtlebot4” is used for the dodging 
robot in my research. It is a ROS2-based mobile robot. It is capable of mapping the 
robot’s surroundings, navigating autonomously, and running Artificial Intelligence 
models on its camera. 

3 Development  

3.1 OAK-D Pro Camera 

OAK-D Pro is a stereo camera mounted on the Turtlebot4, through which we can 
get the “depth” information of the object in front of it. In other words, it can provide 
the distance between the robot and the obstacle. Together with the example code and 
pre-trained model provided by Luxonis [7], we can track the obstacle and get the 
coordinate in the camera’s frame. The camera can track a person and also provide 
the coordinates of the person in its frame. However, the robot doesn’t know where 
the obstacle actually is, since the coordinates of the robot itself are different from 
that of the camera. Thus, we need to deal with some forward kinematics here. 

3.2 Forward Kinematics 

According to [8, p. 28], the forward kinematics challenge for a serial-chain manip-
ulator involves determining the end-effector’s position and orientation concerning 
the base. This is achieved by utilizing joint positions and geometric link parameter 
values across all joints. As shown in Fig. 1, if we need to represent the coordinates 
p in terms of the dashed coordinates system, all we need to do is to find a special 
matrix that represents the relationship between the two systems. When we multiply 
p with the matrix, we can get the coordinates of p in terms of the dashed system, 
which is p′.
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Fig. 1 An example of transformation. p = (x, y, z) is the coordinates of the point P in the coordinate 
system on the left side. If we would like to express the coordinates of this point with respect to the 
other coordinate system shown on the right, a transformation matrix R is needed 

Fortunately, there is already information regarding the transformation between 
the camera frame and the odometry frame stored in two topics in the robot (/tf and 
/tf_static). All we need to do is simply subscribe to the topics and retrieve the 
information. However, the transformation between the two systems is not as simple 
as the example in the previous paragraph. It is composed of six transformations in 
total. As shown in the top side of Fig. 2, the transformation starts from “oakd_ 
rgb_camera_op-tical_frame” through “odom.”

All the frames mentioned above and their locations are shown on the bottom 
side of Fig. 2. Again, the goal is to transform the coordinates in the camera frame 
into the odometry frame. The camera frame is actually “oakd_rgb_camera_ 
optical-_frame” in the figure. (Since the three frames that start with “oakd” 
are too close together, only one of them is shown.) As mentioned before, we can 
get the transformation information from the topic. What we are going to get are 
“Translation Data” and a set of “Quaternions.” Here, “Quaternions” are an alternate 
way to describe orientation or rotations in 3D space using an ordered set of four 
numbers. We can then create a rotational matrix by the expression defined in Eq. 1, 
where q0, q1, q2, and q3 are the quaternions. 

R(Q) = 

⎡ 

⎣ 
2
(
q2 0 + q2 1

) − 1 2(q1q2 − q0q3) 2(q1q3 + q0q2) 
2(q1q2 + q0q3) 2

(
q2 0 + q2 2

) − 1 2(q2q3 − q0q1) 
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2

(
q2 0 + q2 3

) − 1 

⎤ 

⎦ (1) 

After that, we put the rotational matrix into the upper left corner of a 4 × 4 
matrix with translation data on the right side of it. Below the rotational matrix, 
we put a (0, 0, 0, 1) row vector, as shown in Eq. 2. By doing so, we can create a
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Fig. 2 (Top) The transformation chain of all six coordinate systems. The transformation process 
begins from the camera’s frame to the odometry frame. An arrow represents a transformation. 
(Bottom) Locations of every coordinate system used in the research

transformation matrix which transfer from frame b to frame a. Again, since there are 
six transformations, the final transformation matrix T0 

6 will be the product of the six 
transformation matrices as illustrated in Eq. 3. Where frame 6 represents “oakd_ 
rgb_camera_optical_frame,” frame 5 represents “oakd_rgb_-camera_ 
frame,” and so on and so forth. We can then use the product of the final matrix and 
the coordinates we get from the camera frame to get Hodom, which is the object 
coordinates in the odometry frame as shown in Eq. 4. 

T a b = 

⎡ 

⎢⎢⎣ 
R3×3(Q) 
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Hodom = 

⎡ 
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1 

⎤ 

⎥⎥⎦ 
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⎤ 
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3.3 Path Planning 

After the robot knows where the object actually is, we then need to figure out 
some path-planning method for the robot to dodge the object. In my case, I use 
RRT* (Rapidly-exploring Random Trees) as my path-planning method. RRT* is a 
motion planning algorithm used in robotics and autonomous systems to efficiently 
find collision-free paths. It builds a tree-like structure by iteratively extending towards 
randomly selected points while gradually improving the path’s optimality. After we 
get the dodging path planned by RRT*, there is still a problem. The path is usually not 
smooth enough for the robot to follow properly. Therefore, creating a Bézier curve 
base on the RRT* path might be a satisfying way to deal with this problem. The 
Bézier curve interpolates all the points on the path generated by RRT* and therefore 
smooths out angles on the path. 

3.4 Robot Dynamics 

The dynamics of the Turtlebot4 can be analogous to that of the unicycle. The main 
advantage of doing this is that the unicycle model’s control inputs are simply linear 
velocity and angular velocity. That is to say, we only need to deal with two intuitive 
parameters rather than considering wheel speeds or motor torques directly. According 
to [9], under the constraints of rolling without slipping, the dynamical model of the 
unicycle is given by Eqs. 5 and 6, where m is the mass of the robot, I is the inertia of 
the robot, and the control inputs are the pushing force F and the steering torque N. A  
purely kinematic model is given by Eq. 5, where the control inputs are the forward 
velocity v and the angular velocity ω. 

ẋ = v cos θ 
ẏ = v sin θ 
θ̇ = ω (5) 

mv̇ = F 
I ω̇ = N (6)
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3.5 Controller 

In accordance with [9], the state of the robot can be expressed in the form of (x, y, θ  ), 
where x and y are its coordinates in the odometry frame and θ is its orientation. 
Assuming that the velocity of the robot’s center mass is orthogonal to the wheel axis 
and the wheels of the robot roll without slipping. Based on the information given, 
we can get the angular velocity ω and the velocity v for the robot to drive to the 
destination user assigned by the series of calculations Eqs. 7, 8, 9, 10, and 11, where 
k1 and k2 in Eq. 10 are positive constants. In my case, k1 = 1100 × (

10−4
)
and 

k2 = 5k1 when the robot is not dodging the object, k1 = 500×(
10−4

)
and k2 = 20k1 

when the robot is dodging the object. This process should be done in every driving 
iteration. In other words, the robot keeps calculating the state difference between its 
current position and the destination and drives forward for a short distance. 

x = xcurrent − xdestination 
y = ycurrent − ydestination 
θ = θcurrent − θdestination (7) 

z1 = θ 
z2 = x cos θ + y sin θ 
z3 = x sin θ − y cos θ (8) 

x1 = z1 
x2 = z2 
x3 = −2z3 + z1z2 (9) 

u1 = −k1x1 + 
k2x3 

x2 1 + x2 2 
x2 

u2 = −k1x2 − 
k2x3 

x2 1 + x2 2 
x1 (10) 

ω = u1 
v = u2 + z3u1 (11) 

3.6 Implementation 

The project can be implemented by a few nodes and topics. “camera data 
receiver” is a node that receives the string coordinates data from the OAK-D
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Fig. 3 The flow chart of the dodging process 

Pro camera and publishes them to the topic “/camera_data.” “camera data 
reader” is a node subscribing to the topic “/camera_data” and transforming 
the data into float type. After that, the float data will be published to the topic “/ 
obstacle_info.” “transformation” is a node subscribing to the topic “/ 
obstacle_info” and transforming those float coordinates into the coordinates in 
the odometry frame. At the same time, those data will be published to the topic “/ 
odom_obstacle_info.” The node “robot driver” will subscribe to both 
“/odom” and “/odom_obstacle_info” topics at the same time. By doing so, 
the robot can get its position and the obstacle’s position in the odometry frame. 
Finally, the node will calculate the velocity and the angular velocity of the robot and 
publish them to the “/cmd_vel” topic, through which we can drive the robot. The 
simulation can subsequently be carried out by adhering to the procedure depicted 
in Fig. 3 starting from the upper left corner. This is also the working process of the 
“robot driver” node. 

4 Results 

4.1 Simulation 

Before every driving iteration, the robot waits for the new information of /odom 
and /odom_obstacle_info to be published. After that, the robot will determine 
whether the obstacle is close enough to itself. If close, the robot will start dodging the 
object, or it will keep driving to the final destination the user assigned. The dodging 
process is comprised of the following parts. First, do the RRT* path planning. Second,
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Fig. 4 The robot (shown in green) starts from different points to different destinations. While the 
obstacle (shown in orange) starts from (0, 0) to (250, 250) 

create a Bézier curve based on the RRT* path. Third, drive along the Bezier curve. 
The dodging process will be done by the robot every several iterations until it is 
close enough to the final destination. When close to the destination, the robot drives 
directly to the destination. The robot starts from the right side and the obstacle starts 
from the lower left corner as shown in Fig. 4. Meanwhile, set the starting point and the 
final destination of the robot at different points for some experiments. The darkness 
of the color represents the passing of time. Events that occur earlier are represented 
by lighter colors. 

When the robot and the obstacle both reach the light blue circle in the figure, the 
robot detects the existence of the obstacle, so the robot starts to dodge the object. 
At the same time, the robot is on the red dot and starts to create the first RRT* path 
base on the obstacle map calculated, which is the blue line in the figure. The obstacle 
map is marked in orange. After that, the robot will create a Bézier curve, which is 
the green dash line, based on that RRT* path and separates the curve into several 
sections, the yellow dots are the nodes that separate the curve. The robot then starts 
driving from the red dot to the first yellow dot in front of it. After a few iterations, 
the robot does the same process again and again until it is close enough to the final 
destination. At that point, it will drive directly to the final destination. 

4.2 Demonstration Video 

In the demonstration video [10], the Turtlebot4 will start driving from the top of the 
screen to the bottom, as shown in the left image of Fig. 5. The distance I assigned 
for the robot to proceed is 3 m, through which the robot can reach the destination. 
After it starts driving, a moving person will walk from the right side to the left side, 
as illustrated by the right image of Fig. 5, the goal of the robot is to dodge me using 
the method I designed and then reach the original destination.
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Fig. 5 (Left) The starting point and the destination. (Right) The dodging process starts 

5 Conclusion and Future Uses 

This research presented a simple method for Turtlebot4 to dodge dynamical obstacles 
when it is moving. It lays the foundation for affordable, vision-based obstacle avoid-
ance systems. The demonstration video revealed that the methodology developed 
in this research could perform satisfactorily. The main drawback is that Turtlebot4 
sometimes oversteers while dodging, leading to a rough process. Some comparative 
experiments for the proposed method to compare with LiDARs or event cameras will 
be conducted to evaluate its performance and benefits. 

Contemporary self-driving cars employ LiDARs to acquire information about the 
obstacles around them. However, LiDARs are much more expensive than cameras. 
The research elucidated in this report has the potential to be used in self-driving 
cars, thereby reducing production expenses in the foreseeable future. Besides, if the 
research illustrated in this project had been employed by unmanned aerial vehicles, 
in addition to using ultrasonic sensors, drones might have an extra layer of anti-
collision protection. In other words, this makes the flights of drones getting safer. 
More research will be needed to support the feasibility of the potential applications. 
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